

R2A20132SP

Critical Conduction Mode Interleave PFC Control IC

REJ03D0921-0100 Rev.1.00 Oct 02, 2009

Description

The R2A20132SP controls two boost converters to provide a active power factor correction.

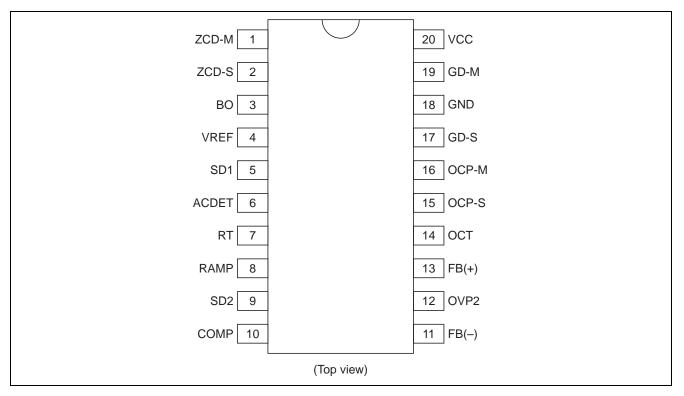
The R2A20132SP is based on R2A20112 and additional functions are Slave drop function at light load, Off time control, Brownout, Double OVP, Dynamic under voltage protection, and ZCD signal open detection.

Also the reference voltage tolerance is improved.

The R2A20132SP adopts critical conduction mode for power factor correction and realizes high efficiency and a low switching noise by zero current switching.

Interleaving function improve ripple current on input or output capacitor by 180 degrees phase shift.

The feedback loop open detection, over current protection are built in the R2A20132SP, and can constitute a power supply system of high reliability with few external parts.


Features

- Maximum ratings
 - Supply voltage Vcc: 24 V
 - Operating junction temperature Tj-opr: -40 to +150°C
- Electrical characteristics
 - VREF output voltage VREF: $5.0 V \pm 1.5\%$
 - UVLO operation start voltage Vuvlh: 10.5 V \pm 0.7 V
 - UVLO operation shutdown voltage Vuvll: 9.3 V \pm 0.5 V
 - UVLO hysteresis voltage Hysuvl: $1.2 V \pm 0.5 V$
- Functions
 - Boost converter control with critical conduction mode
 - Interleaving control with slave drop (SD) function at light load
 - Off time control (OTC) function: Switching loss is decreased at light load.
 - Brownout function
 - Double OVP: Two line sense for over voltage protection
 - Dynamic under voltage protection (DUVP): Sense for under voltage protection
 - AC Hi voltage detection (ACDET)
 - Feedback loop open detection
 - ZCD signal open detection
 - Master and Slave independenced over current protection
 - 140 µs restart timer
 - Package lineup: Pb-free SOP-20

Ordering Information

Part No.	Package Name	Package Code	Taping Spec.		
R2A20132SPW0	FP-20DAV	PRSP0020DD-B	2000 pcs./one taping product		


Pin Arrangement

Pin Functions

Pin No.	Pin Name	Input/Output	Function
1	ZCD-M	Input	Master converter zero current detection input terminal
2	ZCD-S	Input	Slave converter zero current detection input terminal
3	BO	Input	Brownout input terminal
4	VREF	Output	Reference voltage output terminal
5	SD1	Input	Slave drop threshold voltage input terminal (for Lo line: 100 V)
6	ACDET	Output	AC hi voltage detection output terminal
7	RT	Input/Output	Oscillator frequency setting terminal
8	RAMP	Input/Output	Ramp waveform setting terminal
9	SD2	Input	Slave drop threshold voltage change terminal (for Hi line: 200 V)
10	COMP	Output	Error amplifier output terminal
11	FB()	Input	Error amplifier input (-) terminal
12	OVP2	Input	Over voltage detection terminal
13	FB(+)	Input	Error amplifier input (+) terminal
14	OTC	Input	Off time control input terminal
15	OCP-S	Input	Slave converter over current detection terminal
16	OCP-M	Input	Master converter over current detection terminal
17	GD-S	Output	Slave converter Power MOSFET drive terminal
18	GND	—	Ground
19	GD-M	Output	Master converter Power MOSFET drive terminal
20	VCC	Input	Supply voltage terminal

Block Diagram

RENESAS

Absolute Maximum Ratings

				$(Ta = 25^{\circ}C)$
Item	Symbol	Ratings	Unit	Note
Supply voltage	VCC	-0.3 to 24	V	
GD peak current	lpk-gd	-300 +1200	mA	3
GD DC current	ldc-gd	-15 +60	mA	
ZCD terminal current	Izcd	+10 -10	mA	
BO terminal current	lbom	300	μA	
RT terminal current	Irt	-200	μA	
Vref terminal current	Iref	-5	mA	
COMP terminal current	Icomp	±1	mA	
ACDET terminal current	lacdetm	500	μA	
Terminal voltage	Vt-group1	-0.3 to Vcc	V	4
	Vt-group2	-0.3 to Vref	V	5
Vref terminal voltage	Vt-ref	-0.3 to Vref + 0.3	V	
Power dissipation	Pt	1	W	6
Operating junction temperature	Tj-opr	-40 to +150	°C	
Storage temperature	Tstg	-55 to +150	°C	

Notes: 1. Rated voltages are with reference to the GND terminal.

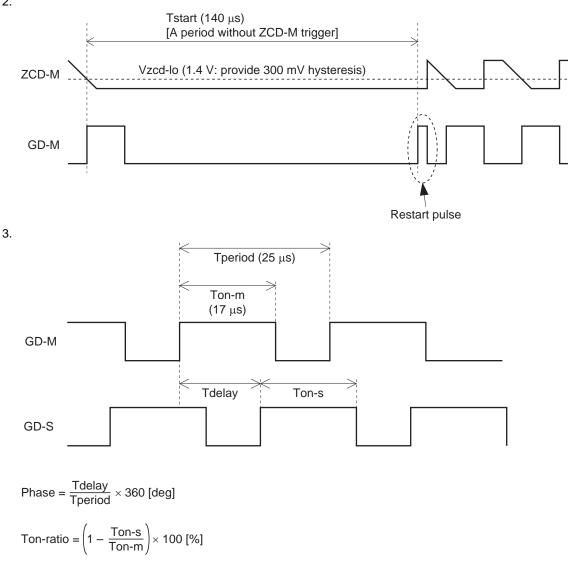
- 2. For rated currents, inflow to the IC is indicated by (+), and outflow by (-).
- 3. Shows the transient current when driving a capacitive load.
- 4. This is the rated voltage for the following pins: RAMP, ACDET
- 5. This is the rated voltage for the following pins: FB(+), FB(-), OCP-M, OCP-S, OVP2, SD1, SD2, OTC
- In case of R2A20132SP (SOP): θja = 120°C/W This value is a thing mounting on 40 × 40 × 1.6 [mm], a glass epoxy board of wiring density 10%.

Electrical Characteristics

 $(Ta = 25C, VCC = 12 V, RT = 22 k\Omega, OCP = GND, CRAMP = 680 pF, FB(+) = 2.5 V, FB(-) = COMP, BO = 5 V, OVP2 = GND, SD1 = SD2 = GND)$

	ltem	Symbol	Min	Тур	Max	Unit	Test Conditions
Supply	UVLO turn-on threshold	Vuvlh	9.8	10.5	11.2	V	
	UVLO turn-off threshold	Vuvll	8.8	9.3	9.8	V	
	UVLO hysteresis	Hysuvl	0.7	1.2	1.7	V	
	Standby current	Istby	_	150	230	μA	VCC = 8.9 V, ZCD = OPEN
	Operating current	Icc		5.2	7.5	mA	FB(–) = open
Brownout	BO threshold voltage	Vbo	1.33	1.40	1.47	V	
	BO pin hysteresis current	lbo	6.9	7.7	8.5	μA	BO = 1 V
VREF	Output voltage	Vref	4.925	5.000	5.075	V	Isource = -1 mA
	Line regulation	Vref-line		5	20	mV	Isource = -1 mA , Vcc = 10 V to 24 V
	Load regulation	Vref-load	_	5	20	mV	Isource = -1 mA to -5 mA
	Temperature stability	dVref	_	±80	_	ppm/°C	Ta = -40 to +125°C * ¹
Error amplifier	Feedback voltage	Vfb(-)	2.462	2.500	2.538	V	FB(–)-COMP Short, RAMP = 0 V
	Input bias current1	lfb(-)	-0.5	-0.3	-0.1	μΑ	Measured pin: FB(–), FB(–) = 3 V
	Input bias current2	lfb(+)	0.1	0.3	0.5	μΑ	Measured pin: FB(+), FB(+) = 3 V
	Open loop gain	Av	_	50	_	dB	*1
	Upper clamp voltage	Vclamp-comp	8.0	9.1	10.6	V	FB(–) = 2.0 V, COMP: Open
	Low voltage	VI-comp	_	0.1	0.3	V	FB(-) = 3.0 V, COMP: Open
	Source current1	Isrc-comp1	_	-120		μΑ	FB(-) = 0 V to 1.5 V, COMP = 2.5 V
	Source current2	Isrc-comp2	_	-1		mA	FB(-) = 3 V to 1.5 V, COMP = 2.5 V
	Sink current	Isnk-comp		300	_	μA	FB(-) = 3.5 V, COMP = 2.5 V * ¹
	Transconductance	gm	100	180	270	μs	$FB(-) = 2.45 V \leftrightarrow 2.55 V,$ COMP = 2.5 V
RAMP	RAMP charge current1	lc-ramp1	72	82	92	μА	RAMP = 0 V to 7 V, FB(-) = 2 V, COMP = 2 V, SD2 = 2.5 V
	RAMP charge current2	lc-ramp2	150	165	180	μA	RAMP = 0 V to 7 V, FB(-) = 2 V, COMP = 5 V, SD2 = 2.5 V
	RAMP discharge current	ld-ramp	7	15	29	mA	FB(-) = 3 V, COMP = 2 V, RAMP = 1 V
	Low voltage	VI-ramp	—	17	200	mV	FB(–) = 3 V, COMP = 3 V, Isink = 100 μA
Zero	Upper clamp voltage	Vzcdh	5.8	6.4	7.0	V	Isource = -3 mA
current	Lower clamp voltage	Vzcdl	-0.5	0	0.5	V	lsink = 3 mA
detector	ZCD low threshold voltage	Vzcd-lo	0.95	1.40	1.65	V	*1
	ZCD hysteresis	Hyszcd	180	300	390	mV	*1
	Input bias current	Izcd	-14	-10	-6	μA	1.2 V < Vzcd <5 V

Note: 1. Design spec.

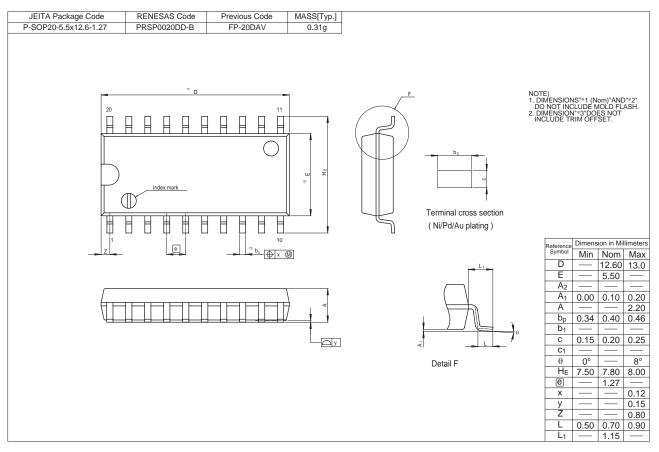

Electrical Characteristics (cont.)

 $(Ta = 25C, VCC = 12 V, RT = 22 k\Omega, OCP = GND, CRAMP = 680 pF, FB(+) = 2.5 V, FB(-) = COMP, BO = 5 V, OVP2 = GND, SD1 = SD2 = GND)$

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Restart	Restart time delay	Tstart	105	140	175	μs	FB(-) = 2.0 V, COMP = 5 V * ²
ACDET	ACDET current	lacdet	0	1	2	μA	Vacdet = 12 V, Vbo = 3.3 V
	ACDET voltage	Vacdet	0.2	0.4	0.6	V	lacdet = 500 μ A, Vbo = 3.7 V
	High threshold voltage	Vacdet-hi	3.2	3.6	4.0	V	Measured Pin: BO
	Low threshold voltage	Vacdet-lo	2.6	3.0	3.4	V	Measured Pin: BO
Slave	Phase delay	Phase	160	180	200	deg	*1, *3
control	On time ratio	Ton-ratio	-5		5	%	*1, *3
Slave drop	Input bias current	lsd1	-1.0	-0.5	1.0	μΑ	SD1 = 1 V,
							COMP = 4 V, FB(-) = 0 V
		lsd2	-1.0	-0.5	1.0	μΑ	SD2 = 1 V,
							COMP = 4 V, FB(-) = 0 V
	SD pin hysteresis current	lsd-hys	-8.5	-7.7	-6.9	μA	SD1 = 2 V, BO = 2 V,
							COMP = 2 V, FB(-) = 0 V
Off time	Input bias current	lotc	-1.0	0	1.0	μA	OTC = 3 V
control							

Note: 1. Design spec.

2.


Electrical Characteristics (cont.)

 $(Ta = 25C, VCC = 12 V, RT = 22 k\Omega, OCP = GND, CRAMP = 680 pF, FB(+) = 2.5 V, FB(-) = COMP, BO = 5 V, OVP2 = GND, SD1 = SD2 = GND)$

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Gate drive	Master gate drive rise time	tr-gdm	—	30	100	ns	GD-M: 1.2 V to 10.8 V,
							CL = 100 pF
	Slave gate drive rise time	tr-gds	—	30	100	ns	GD-S: 1.2 V to 10.8 V,
							CL = 100 pF
	Master gate drive fall time	tf-gdm	—	5	30	ns	GD-M: 10.8 V to 1.2 V,
							CL = 100 pF
	Slave gate drive fall time	tf-gds	—	5	30	ns	GD-S: 10.8 V to 1.2 V,
							CL = 100 pF
	Master gate drive low voltage	Vol1-gdm	—	0.02	0.1	V	Isink = 2 mA
		Vol2-gdm	—	0.01	0.2	V	Isink = 1 mA, VCC = 5 V
	Master gate drive high voltage	Voh-gdm	11.5	11.9	—	V	Isource = -2 mA
	Slave gate drive low voltage	Vol1-gds	—	0.02	0.1	V	lsink = 2 mA
		Vol2-gds	—	0.01	0.2	V	Isink = 1 mA, VCC = 5 V
	Slave gate drive high voltage	Voh-gds	11.5	11.9	_	V	Isource = $-2 \text{ mA} *^1$
Over	OCP threshold voltage	Vocp	0.28	0.31	0.34	V	
current							
protection							
Over	Dynamic OVP threshold	Vdovp	VFB(+)	VFB(+)	VFB(+)	V	COMP = OPEN
voltage	voltage		×1.035	×1.050	×1.065		
protection	OVP1 threshold voltage	Vovp1	VFB(+)	VFB(+)	VFB(+)	V	COMP = OPEN
			×1.075	×1.090	×1.105		
	OVP1 hysteresis	Hys-ovp1	50	100	150	mV	COMP = OPEN
	FB(-) open detect threshold	Vfbopen	0.45	0.50	0.55	V	COMP = OPEN
	voltage						
	FB(-) open detect hysteresis	Hysfbopen	0.16	0.20	0.24	V	COMP = OPEN
	OVP2 threshold voltage	Vovp2	2.635	2.685	2.735	V	COMP = OPEN,
							VFB(-) = 2.5 V
	OVP2 hysteresis	Hys-ovp2	50	100	150	mV	COMP = OPEN,
							VFB(-) = 2.5 V
	OVP2 pin input bias current	lovp2	-0.5	0	0.5	μA	Measured pin: OVP2
	Dynamic UVP threshold	Vduvp	VFB(+)	VFB(+)	VFB(+)	V	COMP = OPEN
	voltage		×0.89	×0.92	×0.95		
ZCD open	Slave ZCD open minimum	tzcds	—	100	—	ms	COMP = 5 V,
detector	detect delay time						Gate drive 10 kHz *1

Note: 1. Design spec.

Package Dimensions

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 But not infinited to, product data. diagrams, charts, programs, algorithms, and application scule as the development of weapons of mass and regulations, and proceedures required by such laws and regulation.
 All information in the purpose of any other military use. When exporting the products or the technology described herein, you should follow the applicable export control laws and regulations, and proceedures required by such laws and regulations.
 All information included in this document, such as product data, diagrams, charts, programs, algorithms, and application oracit useraphes, is current as of the date this document, but has product data, diagrams, charts, programs, algorithms, and application is activated in this document, but has product data, diagrams, charts, programs, algorithms, and application is additional and different information in the date this document, but Renesas assumes no liability whattosever for any damages incurred as a constraint of the data different information in this document, but Renesas assumes no liability whattosever for any damages incurred as a different information in this document, but Renesas as products are not eleval to morting in the information in this document.
 When using or otherwise releval as the failute on mating in the information in this document, but Renesas assumes no liability whattosever for any damages incurred as a disclosed thy very provide section and traffic to the section data information in the date the information in light of the total system before deciding about the applicability or otherw

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com